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Summary

Parametric-linkage analysis applied to large pedigrees
with many affected individuals has helped in the iden-
tification of highly penetrant genes; but, for diseases
lacking a clear Mendelian inheritance pattern or caused
by several genes of low to moderate penetrance, a more
robust strategy is nonparametric analysis applied to
small sets of affected relatives, such as affected sib pairs.
Here we show that the robustness of affected-sib-pair
tests is related to the shape of the constraint set for the
sibs’ identity-by-descent (IBD) probabilities. We also de-
rive a set of constraints for the IBD probabilities of af-
fected sib triples and use common features of the shapes
of the two constraint sets to introduce new nonpara-
metric tests (called “minmax” tests) that are more robust
than those in current use. Asymptotic-power computa-
tions support the robustness of the proposed minmax
tests.

Introduction

Classical linkage analysis assumes a parametric model
for the effects of genotypes at a single locus, on risk of
a trait (Ott 1991). This method has helped in the iden-
tification of highly penetrant genes for human diseases,
such as Huntington disease and Alzheimer disease,
whose etiologies follow simple Mendelian patterns; but
it has been less successful in detecting the genetic basis
of more-complex diseases, such as schizophrenia and
diabetes (Risch 1990a). These disorders may involve
multiple genes, each with low penetrance. Because the
classical approach is sensitive to misspecification of the
mode of inheritance at a particular locus, which usually
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is unknown, its power is apt to be poor for complex,
multigenic diseases.

This problem has led to the use of nonparametric
methods, which require fewer model assumptions. These
include both the likelihood-ratio (or maximum-LOD-
score) test described by Risch (1990b) and modified, by
Faraway (1993) and Holmans (1993), for affected sib
pairs and the means (or affected-sib-pair) test (Penrose
1953). In contrast to the sensitivity of the classical
method, these tests perform reasonably well under a
broad range of assumptions (Kruglyak et al. 1996; Teng
and Siegmund 1997). Here we examine the power and
robustness of various nonparametric tests for linkage
based on affected sibships. We follow Schaid and Nick
(1990) in presenting affected-sib-pair tests as weighted
sums of observed frequencies of pairs sharing zero, one,
or two alleles identical by descent (IBD). We show that
the constraints of Faraway (1993) and Holmans (1993)
provide a simple geometric interpretation of the weights,
one that shows graphically when a test is optimal. The
geometric interpretation motivates a new test, called the
“minmax test,” that is more robust than the nonpara-
metric tests currently used. Finally, we derive, for the
IBD configuration probabilities of sib triples, a set of
constraints analogous to those derived, by Faraway
(1993) and Holmans (1993), for sib pairs. We use these
constraints to provide a geometric interpretation of test
optimality and to derive robust minmax tests for affected
sib triples.

Affected Sib Pairs

To simplify the discussion, we restrict attention to a
single marker for which the IBD status of siblings is
unambiguously determined. Suppose that we have typed
marker alleles for a total of n sib pairs, all of which are
affected with a given trait. We wish to determine whether
the marker is near a gene that predisposes to the trait.
Let ni denote the number of sib pairs that inherit i marker
alleles IBD, , with . Also, leti � 0,1,2 n � n � n � n0 1 2

zi denote the probability that two sibs inherit i marker
alleles IBD, , with , and let ˆi � 0,1,2 z � (z ,z ,z ) z �0 1 2

represent the relative frequencies1ˆ ˆ ˆ(z ,z ,z ) � (n ,n ,n )0 1 2 0 1 2n

observed for the n sib pairs. We want to test the null
hypothesis , using a test that performs1 1 1z � ( , , ) { p4 2 4

well regardless of the true value of z.



Whittemore and Tu: Linkage Tests for Affected Sibs 1229

Figure 1 Unit simplex with vertices O, B, and C in the z1z0 plane
containing all points , where is the observed proportion of sibˆ ˆ ˆ(z ,z ) z1 0 i

pairs who inherit i alleles IBD, . Also shown is the triangle T2i � 0,1
with vertices N,O, and A containing all true IBD probabilities (z1,z0)
(Holmans 1993).

Considerable research has focused on the relative
power of three tests. The first is the likelihood ratio test
(also called the “maximum-lod-score test”), described
by Risch (1990b). It is based on the ratio

ˆL(z)
, (1)

L(p)

where denotes the multinomial likeli-n n n0 1 2L(z) ∝ z z z0 1 2

hood of the observed IBD sharing frequencies when the
true probabilities are given by z. Faraway (1993) and
Holmans (1993) showed that the power of this test can
be increased by evaluating the numerator not at the point

but, rather, at a different point . The coordinates ofˆ ˜z z
are constrained to lie within the triangle of valuesz̃

consistent with the underlying genetics of IBD sharing
by the sibs (triangle T2 with vertices N, O, and A in fig.
1). Specifically, corresponds to that point within thez̃
triangle T2 for which L(z) is maximized. This constrained
likelihood ratio (CLR) test is based on the ratio L( )/z̃
L(p).

The second test, the means test (also called the “mean-
pairs” test, or the “affected-sib-pair” test), compares the
mean number of alleles shared IBD by the sibˆ ˆ2z � z2 1

pairs with its null expectation . The third1 12( ) � � 14 2

test, the proportions test (also called the “pairs” test, or
the “two-alleles” test), compares the proportion ofẑ2

sib pairs sharing both alleles IBD with its null expec-

tation, . These two tests have been studied by several1
4

investigators, including Suarez et al. (1978), Suarez and
Van Eerdewegh (1984), Blackwelder and Elston (1985),
Schaid and Nick (1990), and Tierney and McKnight
(1993). Both tests are special cases of tests obtained by
taking the difference between a weighted sum ˆw z �0 0

of the observed IBD sharing frequencies andˆ ˆw z � w z1 1 2 2

its null expectation and then dividing this difference by
its standard error (Schaid and Nick 1990). Under the
null hypothesis of no linkage, the test statistic has a
standard Gaussian distribution asymptotically, as n r

. Because the square of a standard Gaussian variate is�
a x2 variate on 1 df, we shall call such tests “1df tests.”

The test statistic for a 1df test is invariant under linear
transformations of the weights wi. Therefore, the weights
can be standardized arbitrarily so that andw � 00

. The test is then completely determined by thew � 12

weight w1 assigned to . Thus the statistics for the meansẑ1

test and the proportions test are special cases of statistics
of the form

ˆ ˆ ˆ ˆz � w z � E (z � w z )2 1 1 0 2 1 1X � � ˆ ˆV (z � w z )0 2 1 1

1 1� ˆ ˆnUz � � w z � I( )2 1 14 2

� . (2)
1 2�3 � 4w � 4w1 14

Here E0[�] and V0(�) denote null expectation and var-
iance, respectively. In particular, for the means1w �1 2

test, and for the proportions test.w � 01

Consider now the following family of models for the
true IBD sharing probabilities z, in which z is a function
z(l) of a scalar parameter l:

1 1 1
F � z:z � l(0,a,1 � a) � (1 � l) , , ;a [ ( )4 2 4

0 X l X 1 . (3)]
Here a is a fixed constant, and the parameter l varies
from 0 to 1. The value corresponds to the nulll � 0
hypothesis . We shall give a geometric interpreta-z � p
tion of the Fa family of models in the next section. It is
well known that the proportion z1 of sib pairs sharing
one allele IBD satisfies (Risch 1990b). This10 X z X1 2

constraint, when used in family of models (3) with
, implies that . The following propo-1l � 1 0 X a X 2

sition, which is discussed in a more general context by
Whittemore (1996), relates the test statistic X of equa-
tion (2) to the Fa family of models.
PROPOSITION 1. The statistic X of equation (2) is the
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efficient score statistic for the likelihood function (1) and
the Fa family of models (3) if and only if

1 a2 1
w � and 0 X a X . (4)1 1 � a 2

In this case,

� ˆ ˆn[4(a � 1)z � (6a � 4)z � 3 � 4a]0 1
X � X � . (5)a 2�3 � 8a � 6a

Conversely, the efficient score statistic for each Fa family
of models (3) with is a statistic of the form10 X a X 2

given in equation (2) . A proof of the proposition can
be found in Appendix A.

We shall call the family of 1df tests (2) with w1 given
by formula (4) “admissible” 1df tests. The means test
and the proportions test are the two extremes in this
family, corresponding to and ,1w � a � w � a � 01 12

respectively.
The efficient score test is locally most powerful (in the

sense discussed by Cox and Hinkley [1974, p. 113];
hereafter called “optimal”) when its family of models
correctly specifies the mechanism generating the data.
Proposition 1 states that 1df tests are efficient score sta-
tistics; therefore, they are optimal when a is correctly
specified. In particular, the means test and the propor-
tions test are optimal for the F1/2 and F0 families of mod-
els, respectively. But F1/2 is the family of additive genetic
models (i.e., those with no dominance variance com-
ponent), whereas F0 is the family of models with no
additive variance component (Crow and Kimura 1970).
Thus, the means test is optimal under genetic additivity,
whereas the proportions test is optimal when the ad-
ditive variance component is small in comparison with
the dominance component, a situation that describes a
rare recessive allele. Hence, if an additive model or such
a recessive model is known to hold, the choice of optimal
test is clear.

In practice, however, the correct model is seldom
known. This lack of knowledge suggests use of the more
general CLR test described by Risch (1990b), Faraway
(1993), and Holmans (1993). However, this test is com-
plicated, and it does not generalize easily to more than
two sibs or to other types of relatives. Moreover, its
distribution involves 2 df, and so it may be less powerful
than a 1df test. A geometric representation of the prob-
lem will help to clarify the issues and will suggest simple
robust tests that perform as well as or better than the
CLR test.

Geometric Considerations

Since the three probabilities z0, z1, and z2 sum to 1,
any two of them determine the third, so only two need

be specified. We shall work with z1 and z0. Figure 1
shows the unit simplex in the (z1,z0) plane, with vertices
O, B, and C, within which the observed proportions

must lie, and the smaller triangle T2, with verticesˆ ˆ(z ,z )1 0

O, N, and A, containing the true IBD probabilities (z1,z0)
(Faraway 1993; Holmans 1993). The point N corre-
sponds to the null hypothesis . The point1 1(z ,z ) � ( , )1 0 2 4

used in the CLR test is that point, within T2, that˜ ˜(z ,z )1 0

maximizes likelihood (1); in fact, is the point, in˜ ˜(z ,z )1 0

T2, that is closest to in a certain metric (Holmansˆ ˆ(z ,z )1 0

1993; also see Appendix B).
A family,Fa, of models of the form given in formula

(3) specifies that lies1 1(z ,z ) � [al � (1 � l), (1 � l)]1 0 2 4

on the ray NPa, where is a point on the lineP � (a,0)a

segment OA. In particular, the family F1/2 of additive
models consists of points on the ray NA, and the F0

family of models with no additive variance component
consists of points on the ray NO. (Because the F0 family
of models describes rare recessive genes, we shall call it
a “family of recessive models.”) As a consequence of
proposition 1, a 1df test based on Xa is optimal when
the true point lies on the ray NPa. For example, the
means test is optimal when the true point lies on NA,
and the proportions test is optimal when the true point
lies on NO.

A test that is optimal on a given ray should perform
well when the true point is near the ray. For this reason,
the shape of T2 is noteworthy. Because N is a vertex of
T2, the two edges meeting at N form an acute angle. For
complex multigenic traits with small effects at any single
locus, the true IBD probabilities at such a locus represent
a point (z1,z0) that is close to N and, therefore, close to
any ray emanating from N. Therefore, a 1df test, which
is optimal for true points on a particular ray, can be
expected to perform well in comparison with the more
general CLR test. When the true point is far from N,
the relative power of different tests is less important,
since a large proportion of affected sib pairs will share
one or two alleles IBD and most tests will do well.

Because the means test and the proportions test cor-
respond to extreme rays NA and NO on the boundary
of T2, each forfeits power when the other’s family of
models governs the data. It thus seems plausible that a
more robust 1df test would be optimal on a ray NP,
where P is a point approximately midway between A
and O on the line segment OA. In the next section we
use asymptotic-power computations to show that this is
indeed the case, and we also find the best choice of P.

Asymptotic Power

We shall evaluate the asymptotic power of the 1df
tests and of the CLR test under a range of possibilities
for the true IBD probabilities. We also shall determine
the most robust 1df test—that is, the test with minimal
asymptotic-power loss due to model misspecification. Fi-
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Figure 2 Curves showing penalties f(a,a
*

) associated with a test
based on a when the true value is a

*
, for (additive model) and1a �∗ 2

(recessive model). The point , where the curves inter-′a � 0 a � .355∗
sect, gives the minmax test.

nally, we shall compare the power of this most robust
1df test with that of the means test and with that of the
CLR test.

The asymptotic power of a 1df test statistic Xa is de-
termined by its noncentrality parameter. The latter is the
expected value of Xa, which is given in equation (5),
with ( ) replaced by the true point (z1,z0):ˆ ˆz ,z1 0

�n[3 � 4a � 4(a � 1)z � (6a � 4)z ]0 1
. (6)

2�3 � 8a � 6a

But it is clear from figure 1 that the true point (z1,z0)
must lie on a ray for some a

*
, withNP 0 X a Xa ∗∗

. So, on the basis of family of models (3), we can1/2
write

1 1
(z ,z ) � la � (1 � l) ,(1 � l) (7)1 0 ∗[ ]2 4

for some l with . Substitution of the right0 X l X 1
side of equation (7) for (z1,z0) into expression (6) gives
the noncentrality parameter for Xa as�ny(a,a )∗

k(a,a )∗� �ny(a,a ) { nl , (8)∗ �k(a,a)

where . The optimal testk(a,a ) � 3 � 4(a � a ) � 6aa∗ ∗ ∗

statistic when the true point is on the ray is ,NP Xa a∗ ∗
with noncentrality parameter

� � �ny(a ,a ) � nl k(a ,a ) . (9)∗ ∗ ∗ ∗

Two 1df tests with noncentrality parameters and�ny

have equal asymptotic power when their noncen-′ ′�n y

trality parameters are equal. Then their sample sizes are
related by . For example, if is the as-′ ′ 2n � n(y/y ) Xa∗
ymptotically optimal test based on n sib pairs, then, on
the basis of expression (8) and expression (9), the num-
ber of sib pairs needed to obtain the same asymptotic
power from a suboptimal test based on Xa, , isa ( a∗

2

y(a ,a ) k(a,a)k(a ,a )∗ ∗ ∗ ∗′n � n � n . (10)2[ ]y(a,a ) k (a,a )∗ ∗

The quantity

2

′n � n y(a ,a )∗ ∗� � 1 { f(a,a )∗[ ]n y(a,a )∗

is the penalty (in terms of increased sample size) asso-
ciated with the use of the suboptimal test Xa instead of
the optimal one, . For any fixed test value a, f(a,a

*
)Xa∗

is a convex function of a
*

(i.e., the second derivative of
f with respect to a

*
is nonnegative). This convexity im-

plies that the maximum penalty for a occurs at an end-
point or ; that is, the maximum penalty1a � 0 a �∗ ∗ 2

for any admissible 1df test Xa occurs1max f(a,a )0Xa X ∗∗ 2

when the true point lies on the ray , whereNP a � 0a ∗∗
or . The two curves in figure 2 show penalties for1a �∗ 2

tests based on Xa when and . The curves1a � 0 a �∗ ∗ 2

cross at For′ � �a � (3 � 6)/(4 � 6) � 0.355. a X .355
the maximum penalty is f(a, ), whereas for1 a x .3552

the maximum penalty is f(a,0).
We seek a test whose maximum penalty is smaller than

that of any other admissible 1df test, and such a test is
the minmax test. The value a′ determining the minmax
test is defined by

′1 1 1max f(a ,a ) � min max f(a,a ) .[ ]0Xa X ∗ 0XaX 0Xa X ∗∗ ∗2 2 2

It is evident from figure 2 that the intersection point
of the two curves has the smallest maximum′a � .355

penalty; that is, the poorest performance of the minmax
statistic X.355 is better than the poorest performance of
all other 1df test statistics. On the basis of expressions
(4), the minmax test assigns the weight tow � .2751

affected sib pairs sharing one allele IBD. This weight
differs slightly from the midpoint, .25, of the weights

, used by the means test, and , used byw � .5 w � 01 1

the proportions test; it is slightly closer to that of the
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means test. Feingold and Siegmund (1997) proposed us-
ing the midpoint, .w � .251

Table 1 shows, for a range of rays containing theNPa∗
true point (z1,z0) and for the means, proportions, and
minmax tests, the sample sizes n′ needed to achieve the
same asymptotic power as is seen with the optimal test,
on the basis of sib pairs. The sample sizes n′n � 100
are obtained from formula (10) and thus depend only
on the values a and a

*
. Table 1 shows that the means

test incurs a 50% penalty when the data are generated
by a recessive model, and, conversely, that the propor-
tions test incurs a 50% penalty when the data are gen-
erated by an additive model; in contrast, the most severe
penalty incurred by the minmax test is 10%, regardless
of the true IBD probabilities.

We next compare the asymptotic power of the min-
max test with that of the CLR test. The asymptotic dis-
tribution of the CLR statistic is a mixture of x2 distri-
butions having 0, 1, and 2 df (a distribution is one2x0

that puts all probability mass at the origin). The and2x1

distributions are central under the null hypothesis of2x2

no linkage and are noncentral under the alternative hy-
pothesis of linkage. Appendix B describes the noncen-
trality parameters and weights used in the mixture, un-
der the null and alternate hypotheses. Because the
weights are integrals of the standard Gaussian density
function, evaluating them for specific power calculations
(such as those described below) requires numerical
integration.

Table 2 shows the asymptotic power of the means,
minmax, and CLR tests, with type 1 error probability

, for a range of true points (z1,z0), at distancea � .001
of either or from the null point. The calculations1 1

6 8

needed to determine the asymptotic power of the CLR
test are outlined in Appendix B. The critical value of
10.592 for the CLR test was obtained by Holmans
(1993). As expected, the means test is the most powerful
of the three tests when (z1,z0) follows an additive model
(table 2, row 6). However, the minmax test outperforms
the means test in all other circumstances, and it out-
performs the CLR test in all circumstances. Thus there
are no asymptotic power gains from using the more com-
plex CLR test rather than the simpler minmax test.

Affected Sib Triples

We now show that similar geometric considerations
apply to tests based on n affected sib triples, although
there are complications. IBD sharing among three sibs
occurs in one of the four configurations shown in table
3 (Sribney and Swift 1992; Feingold et al. 1993). Table
3 also shows their Mendelian probabilities pi, i �

. Let zi denote the true IBD probability for a trio0, ) ,3
of affected sibs, . Since these sum to 1, wei � 0, ) ,3
need specify only three of them, say z0,z1 and z2. Figure

3 shows the three-dimensional unit simplex with vertices
O, B, F, and G that contains the observed proportions

. Figure 3 also shows a polyhedron T3 with ver-ˆ ˆ ˆ(z ,z ,z )0 1 2

tices N, A, B, C, D, E, and H that contains the true IBD
probabilities (z0,z1,z2) at the trait locus. Appendix C con-
tains a proof of this result. The proof is based on the
following assumptions: (1) there are two alleles at the
disease locus, which are in Hardy-Weinberg equilibrium
in the general population; (2) the penetrance for heter-
ozygotes is intermediate between the two homozygote
penetrances; (3) the sibs are noninbred; and (4) the prob-
ability of recombination between trait and marker loci
is negligible. These assumptions, although weak, may
limit the applicability of the constraint set T3.

Note that, as was true for T2, the null point N is a
vertex of T3, and the faces of T3 meeting at N form a
small solid angle. Thus the geometric considerations sug-
gesting robustness for 1df tests apply here also. As
shown in Appendix C, an additive model specifies that
(z0,z1,z2) lies on the line NA, whereas a recessive model
for a rare trait without phenocopies specifies that
(z0,z1,z2) lies near the line segment BA. A dominant
model for a rare trait specifies that (z0,z1,z2) lies near the
line NA.

The analogue of the likelihood function (1) for af-
fected sib triples is

3

ˆnziL(z) ∝ � z . (11)i
i�0

The unconstrained likelihood ratio (ULR) test is based
on , where . Restriction of the3 1 3 3ˆL(z)/L(p) p � ( , , , )8 16 8 16

first three components (z0,z1,z2) of the true point z to T3

leads to a CLR test analogous to that proposed, by Hol-
mans (1993), for sib pairs. The null distribution of this
CLR test is a mixture of x2 distributions having 0, 1, 2,
and 3 df. Although the asymptotic power of this test
can be expected to exceed that of the ULR test, the
previous considerations suggest that neither test will out-
perform a robust 1df test.

1df Tests

The 1df tests for sib triples are based on weighted
sums of the observed frequencies of the IBD3 ˆ� wzi�0 i i

configurations in table 3. For example, the means test
(Sribney and Swift 1992) gives each configuration a
weight that is proportional to the mean number of alleles
shared by each of the three possible pairs of the three
sibs. This rule yields the weights w ,w ,w ,w �0 1 2 3

. After being standardized arbitrarily so that4,6,2,2
and , the weights are ,1,0,0. This choice1w � 0 w � 13 1 2

of weights also yields the repeats test of Green and
Woodrow (1977) and the “all relatives” test proposed
by Whittemore and Halpern (1994). A sib-triple ana-
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Table 1

Sample Sizes Required for the Same Asymptotic Power as Is Shown by the Optimal 1df Test, Based on 100 Affected Sib Pairs

TRUE VALUE a
*

LOCATION OF

(z1,z0)
OPTIMAL

WEIGHT w1
a

SAMPLE SIZE REQUIRED FOR

Means Test
(w1 � .5)

Proportions Test
(w1 � 0)

Minmax Test
(w1 � .275)

.000 Edge NOb .000 150 100 110

.167 Interior .100 132 101 104

.250 Interior .167 122 103 102

.333 Interior .250 113 108 100

.429 Interior .375 103 122 102

.500 Edge NAc .500 100 150 110

a w1 � weight for sib pairs sharing one allele IBD, when w0 � 0 and w2 � 1.
b Recessive model.
c Additive model.

Table 2

Asymptotic Power of Means, Minmax, and CLR Tests Using 100 Affected Sib Pairs

TRUE

VALUE

a
*

LOCATION

OF

(z1,z0)

OPTIMAL

WEIGHT

w1

ASYMPTOTIC POWER WHEN DISTANCE

OF (z1,z0) FROM NULL POINT �a

1
8

1
6

Means Minmax CLR Means Minmax CLR

.000 Edge NOb .000 .524 .722 .705 .868 .966 .959

.167 Interior .100 .670 .810 .762 .947 .986 .974

.250 Interior .167 .742 .844 .790 .971 .991 .981

.333 Interior .250 .794 .855 .806 .983 .993 .984

.429 Interior .375 .782 .791 .756 .981 .983 .977

.500 Edge NAc .500 .670 .606 .578 .946 .918 .905

a Data are for tests of size —i.e., critical values of 3.1 for means and minmax testsa � .001
and of 10.592 for the CLR test.

b Recessive model.
c Additive model.

logue of the proportions test for sib pairs is based on
the proportion of triples in which all three sibs share
both alleles IBD. This test assigns weights

; we shall call this test the “pro-w ,w ,w ,w � 0,1,0,00 1 2 3

portions test.” After standardizing the weights in the
form w0,1,w2,0, we can write the 1df test statistics in
the form

�X � J/ K , (12)

where

3 1 3� ˆ ˆ ˆJ � n w z � � z � � w z �0 0 1 2 2[ ( ) ( )]8 16 8

and

15 9 6 152 2K � (w � w ) � w w � (w � w ) � .0 2 0 2 0 264 32 128 256

To put these tests in a geometric context, we shall
focus on the subset of T3 consisting of all points lying

on some ray NPab, where (a,b) is an arbitrary point in
the polygon ABCDH in the z1z0 plane, shown in figure
3. Specifically, we shall consider the family of models,

F � z:z � l(a,b,0,1 � a � b) � (1 � l)ab [
3 1 3 3

# , , , ;0 X l X 1 , (13)( ) ]8 16 8 16

for , where a and b satisfy the constraintsz � (z ,z ,z ,z )0 1 2 3

3
0 X a X ;

4

7
X b X 1 ;

40

a � b X 1 ;

6a � 8b x 5 . (14)

We have the following analogue of proposition 1.
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Figure 3 Unit simplex with vertices O, B, F, and G in three-dimensional z0z1z2 space containing all points , where is the observedˆ ˆ ˆ ˆ(z ,z ,z ) z0 1 2 i

proportion of sib triples with IBDi given in table 3, . Also shown is the polyhedron T3 with vertices N, A, B, C, D, E, and H, containingi � 0,1,2
all true IBD probabilities (z0,z1,z2), as shown in Appendix C.

PROPOSITION 2. The test statistic (12) is the efficient
score statistic for the likelihood function (11) and the
family of models (13) if and only if

3 a � b � 12 a � b � 1
w � and w � , (15)0 2a � 4b � 1 a � 4b � 1

where (a,b) satisfies constraints (14).
The proof of this proposition is analogous to that of

proposition 1 and therefore has been omitted.
We shall call 1df tests satisfying equations (15) “ad-

missible” 1df tests and shall denote them as “Xab.” Sub-
stituting equations (15) into test statistic (12) gives

X � X � J/K , (16)ab

where

3 3� ˆJ � n a � b � 1 z �0[( )( )2 8

1 3
ˆ ˆ� z � � (a � b � 1) z �1 2( ) ( )]16 8

and

�3
3 2 2�K � (a � 4b � 1) a � 4b � 2(a � b) � 2ab .24

From equations (15) the means test with ,1w �0 2

, and has test statistic Xab, wherew � 1 w � w � 01 2 3

, which corresponds to point A in figure(a,b) � (.75,.25)
3. Similarly, the proportions test, with , hasw � w � 00 2

test statistic Xab, where , which corresponds(a,b) � (0,1)
to point B in figure 3.
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Table 3

IBD Configurations for Three Siblings, A–C

i

NO. OF ALLELES

SHARED BY
MENDELIAN

PROBABILITY

WEIGHTS USED

IN 1df TESTS

AB AC BC Means Proportions

0 2 1 1 3
8

1
2 0

1 2 2 2 1
16 1 1

2 1 0 1 3
8 0 0

3 2 0 0 3
16 0 0

Asymptotic Power

The test based on Xab is optimal when the true point
lies on the ray NPab. Therefore, the means test X.75,.25 is
optimal for true points on the edge NA of T3. Since
points on this edge correspond to genetic additivity, the
means test is optimal for data generated by an additive
model. Moreover, the proportions test X01 is approxi-
mately optimal for data generated by a recessive model
without phenocopies (Appendix C).

Comparison of asymptotic power among the 1df test
statistics, via their noncentrality parameters, is analo-
gous to that for affected sib pairs. The noncentrality
parameter for a test statistic Xab is its expected value,
which is given by equation (16), with replacedˆ ˆ ˆ(z ,z ,z )0 1 2

by the true point (z0,z1,z2). We assume that the true point
lies on the ray NPab given by one of the Fab family of
models (13), say . Then, by substituting family ofFa b∗ ∗
models (13) for in equation (16), we can writeˆ ˆ ˆ(z ,z ,z )0 1 2

the noncentrality parameter for Xab as

k(a,b,a ,b )∗ ∗� �ny(a,b,a ,b ) { nl ,∗ ∗ �k(a,b,a,b)

where

3
k(a,b,a ,b ) � aa � 4bb � ab � a b∗ ∗ ∗ ∗ ∗ ∗2

13
�(a � b � a � b ) � .∗ ∗ 16

The same arguments as have been used for affected sib
pairs indicate that the penalty, in increased sample size,
associated with the use of a suboptimal test determined
by Xab, with , is(a,b) ( (a ,b )∗ ∗

2y(a ,b ,a ,b )∗ ∗ ∗ ∗f(a,b,a ,b ) � � 1 , (17)∗ ∗ [ ]y(a,b,a ,b )∗ ∗

where

2y(a ,b ,a ,b ) k(a,b,a,b)k(a ,b ,a ,b )∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗� .[ ] 2y(a,b,a ,b ) k (a,b,a ,b )∗ ∗ ∗ ∗

We shall evaluate the performance of a test whose max-
imum penalty is a minimum when the true point lies in
the polyhedron with vertices N, A, B, C, D, and H. This
minmax test is based on Xab, where (a,b) �

. (This value was determined by evaluating(.532,.307)
the penalty associated with all pairs of points [a,b] and
[a

*
,b

*
] in the polygon ABCDH that lie on a square grid

of mesh size 0.01 and choosing the point [a,b] whose
maximum penalty was smallest.) On the basis of equa-

tions (15), the weights for this test are andw � .1380

.w � �.2122

Table 4 shows sample sizes required by the means test,
the proportions test, and this minmax test, to achieve
the same asymptotic power as that seen for the optimal
1df test based on 100 sib triples, for various true points
in T3. Unlike the situation for sib pairs, the increased
sample sizes required by the means test and the pro-
portions test can be large, with four- to fivefold increases
required in some circumstances. In contrast, the minmax
test never requires more than a 50% sample-size increase
over that of the optimal test.

Although we do not explore them here, other tests,
having 2 df, may also perform well. A 2df test is one
that is optimal when the true point lies on a plane (rather
than on a line) that intersects T3 and that passes through
the null point N. Such a plane would intersect the pol-
ygon with vertices A, B, C, D, and H in a line segment
l (rather than at a point [a,b]). The principles described
above could be used to calculate the penalty for a su-
boptimal 2df test based on such a line segment l

*
when

the true point lies on a plane determined by both the
null point N and another line segment l*. One could
then consider the maximum penalty associated with any
test and determine a minmax test, in much the same way
as has been done here. Comparison of power for 1df
and 2df minmax tests is an area in need of further
research.

Combining Affected Sib Pairs and Affected Sib Triples

Many linkage studies using affected sibships involve
both affected sib pairs and affected sib triples. This raises
the question of how to combine pairs and triples into a
single 1df test statistic. To describe the problem, let

represent the observed proportion of sib pairs having(2)ẑi

IBD configuration i, , and let be(3)ˆi � 0,1,2 z ,i � 0,1,2,3i

defined analogously for sib triples. Suppose that we have
chosen weights , , for tests based on pairs(2)w i � 0,1,2i

and have chosen weights , , for tests based(3)w i � 0,1,2,3i

on triples. How does one choose a value c so that the
combined statistic
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Table 4

Sample Sizes Required for the Same Asymptotic Power as Is Shown by the Optimal 1df Test, Based on 100 Affected Sib Triples

TRUE VALUE a
*

,b
*

LOCATION OF (z0,z1,z2)

OPTIMAL

WEIGHTS

w0,w2

SAMPLE SIZE REQUIRED FOR

Means Test
(w0 � .5, w2 � 0)

Proportions Test
(w0 � 0 , w2 � 0)

Minmax Test
(w0 � .139, w2 � �.207)

.75,.25 Edge NAa .5,0 100 250 126
0,1 Edge NB 0,0 250 100 137
.75,.175 Edge ND .67,�.17 106 472 146
0,.625 Edge NC �.25,�.25 400 111 147
.6,.175 Edge NH .25,�.75 133 333 123
.375,.375 Interior of T3 �.07,�.29 188 118 109
.3,.6 Interior of T3 .03,�.06 190 102 117

w0 and w2 are the weights for the IBD configurations 0 and 2, respectively, in table 3, when w1 � 1 and w3 � 0.
a Additive model.

2 3

(2) (2) (3) (3)ˆ ˆX � w z � c w z� �i i i i{ i�0 i�0

2 3

(2) (2) (3) (3)ˆ ˆ�E w z � c w z� �i i i i[ ]}i�0 i�0 U
2 3� (2) (2) (3) (3)ˆ ˆV w z � c w z� �i i i i[ ]i�0 i�0

has good power? The parameter c determines the weight
attached to the data from a sib triple, relative to that
from a sib pair. Feingold et al. (1993) show that the
asymptotically optimal choice for c is the ratio of non-
centrality parameters of the test based on triples to that
of the test based on pairs. Teng and Siegmund (1997)
find noncentrality parameters for pairs and triples when
the means test is used and the true model is additive.

We calculated the optimal value c for analyses based
on the two minmax tests described here, for a range of
scenarios determined by (1) the true model (dominant,
additive, or recessive), (2) the disease probability in the
general population (range 5%–35%), (3) the disease
probability in those with one affected sib, relative to that
of the general population (range 1.5%–3%), and (4) the
disease probability in those with two affected sibs, rel-
ative to that of the general population (range
1.5%–7%). We found that, for each of these scenarios,
the optimal value c was somewhere in the range 1.5–3,
implying that sib triples should receive 1.5–3 times the
weight given to sib pairs. In additional calculations, we
also found that, under a recessive model, c can be quite
large when the trait allele frequency is rare and the phe-
nocopy rate is low.

Discussion

We have provided a geometric interpretation for some
of the nonparametric 1df tests commonly used in the
analysis of affected sibships of sizes 2 and 3. This in-
terpretation has prompted the investigation of new
“minmax” tests, which perform well regardless of the
true probabilities of IBD among the sibs. Asymptotic-
power calculations suggest that the minmax tests are
more robust against misspecification of these probabil-
ities than are the 1df tests currently in use and that they
perform as well as or better than the more complicated
CLR test. Although we have used simulations (not
shown) to verify the asymptotic-power comparisons
given in table 2, we have not used them to examine the
relative power of the minmax and CLR tests in small
samples. This is an area in need of further work.

The results presented in table 1 show that, for affected
sib pairs, all 1df tests are fairly robust; the penalties in
increased sample size are never 150%, and the penalties
for the most robust, minmax test are never 110%. How-
ever, the results presented in table 4 show that this is
not the case for affected sib triples; the choice of test
statistic, as well as its relation to the actual IBD prob-
abilities, can have substantial impact on power; for ex-
ample, the required sample size for the means test can
be as much as four times that of the optimal test. In
contrast, the increase in sample size required by the min-
max test is never 150%. Of course, if there are a priori
biological reasons supporting the hypothesis of genetic
additivity, then the means test is preferable, since, when
it is at least approximately appropriate, it is more pow-
erful than the minmax tests.

Although, in principle, the aforementioned consider-
ations could be extended to more-complex pedigrees, in
practice such extension is difficult, because the compu-
tations become less tractable as the pedigrees increase
in size and complexity. The observed drops in robustness
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when one moves from sib pairs to sib triples suggests
that, as the pedigree sizes increase, all nonparametric
tests become considerably more sensitive to misspecifi-
cation of the weights. Fortunately, much of the material
used in linkage studies consists largely of sibships of
small size.

The minmax tests described here can be used when
the IBD configuration of some sibs cannot be determined
unequivocally, when the marker locus does not coincide
with the disease locus, and when data on multiple mark-
ers are available; for example, the multipoint linkage
analyses implemented in the software GENEHUNTER
(Kruglyak et al. 1996) are based on the additive weights
of the means test but could be modified to accommodate
the weights used by the minmax tests. Holmans (1993)
showed that, when the marker locus does not coincide
with the disease locus, the IBD probabilities at the
marker locus still must lie in the triangle T2. Although
it seems plausible that the marker IBD probabilities for
sib triples also must lie within T3, we have not been able
to extend Holman’s arguments in order to prove it.

The assumptions used to derive the constraint sets T2

and T3 warrant comment. Both constraint sets assume
that the sibs are not inbred. Both also assume that there
are two alleles at the disease locus that are in Hardy-
Weinberg equilibrium in the general population. The
derivation of T3 requires the additional assumption that
the heterozygote penetrance be between that of the two
homozygotes. This “sandwich” constraint may not be
appropriate for traits whose etiologies involve multiple
loci. In addition, the derivation of T2 can be extended
to arbitrarily many alleles, all in Hardy-Weinberg equi-
librium. For sib triples, however, the introduction of
more than two alleles would require similar sandwich
constraints on the heterozygote penetrances.

Schaid and Nick (1990) also evaluated the asymptotic
power of the means and proportions test applied to af-
fected sib pairs, for various models for the true IBD
probabilities. They proposed a test based on the maxi-
mum, , of the means and proportionsX � max (X ,X )0 .5

statistics. They developed critical values for X and ex-
amined the asymptotic power of this test. They showed
that, for the models examined, the test based on X is
more robust than either the means test or the propor-
tions test. The results given in table 4, although limited,
suggest that this robustness may extend to affected sib
triples, because, when the means test does poorly, the
proportions test does well, and vice versa.
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Appendix A

Proof of Proposition 1

For fixed a in the interval , the Fa family of models1[0, ]2

(3) restricts the possible IBD probabilities z to those
which depend on a single unknown scalar parameter l.
Accordingly, when the family Fais assumed, we shall
write , where is given by the like-l(l) � log L[z(l)] L(z)
lihood function (1). We show that, for fixed and known
a with , the efficient score statistic10 X a X 2

′ ′′�l (0)/ E [�l (0)] (A1)0

for the Fa family of models is exactly X of equation (2),
with w given by formulas (4). By substituting 1 a/(1 �2

for w in the right side of equation (2) and settinga)
, we can rewrite equation (2) asˆ ˆ ˆz � 1 � z � z2 0 1

X � Xa

� ˆ ˆn[4(a � 1)z � (6a � 4)z � 3 � 4a]0 1
� . (A2)

2�3 � 8a � 6a

To compute the efficient score statistic, we substitute the
family of models (3) into the log of the likelihood func-
tion (1), to obtain

ˆl(l) � constant � nz log (1 � l).0

1
ˆ�nz log la � (1 � l)1 [ ]2

1
ˆ�nz log l(1 � a) � (1 � l) .2 [ ]4

Differentiating this expression with respect to l and eval-
uating it at , we find that ′ ˆl � 0 l (0) � n[4(a � 1)z �0

and that ′′ˆ(6a � 4)z � 3 � 4a] E [�l (0)] � n[3 � 8a �1 0

. Substituting these expressions into formula (A1)26a ]
gives equation (A2), as required.

Appendix B

Asymptotic Power of the CLR Test

The derivations follow those of Self and Liang (1987),
as discussed by Holmans (1993). With notation that
conflicts slightly with that of the main text, let z �
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represent a point in the unit simplex and let(z ,z )0 1

be the null point. Let I be the1 1p � (p ,p ) � ( , ) 2 #0 1 4 2

Fisher information matrix of the likelihood function2
(1), evaluated at :z � p

�1

p (1 � p ) �p p 8 40 0 0 1I � � .[ ] [ ]�p p p (1 � p ) 4 60 1 1 1

Following Self and Liang, we introduce the transfor-
mation , where L is the di-y � h(z) � (z � p)PL 2 # 2
agonal matrix whose diagonal entries are the eigenvalues

and of I and where P is the orthogonal� �7 � 17 7 � 17
matrix of eigenvectors of I:

.7882 �.6154
P � .( ).6154 .7882

Let , where is the observed value of z. Whenˆ ˆŷ � h(z) z
the null hypothesis is true, the asymptotic distribution
of the ULR statistic is that of a cen-ˆX � 2[l(y) � l(p)]ULR

tral x2 variate with 2 df. In symbols, , where2X ∼ x (0)ULR 2

(d2) denotes the x2 distribution with d df and noncen-2xd

trality parameter d2.
When the null hypothesis is false, the asymptotic dis-

tribution of XULR is , where is the Euclid-2 2x (nFFyFF ) FFyFF2

ean norm of y. To describe the asymptotic distribution
of the CLR statistic XCLR, let denote the image of T2

′T2

under the transformation h(.) . Let be the point inỹ
that is closest to —that is, for which is′ ˆ ˆ ˜T y FFy � yFF2

minimized. The point depends on the location of . If˜ ˆy y
, then . The complement of consists of′ ′ˆ ˜ ˆy � T y � y T2 2

three subsets: the sets and of points for whichˆU U y1 2

lies on the line segment connecting the origin h(N) toỹ
the points yA � h(A) and yO � h(O), respectively, and
the set V of points for which is the origin. Underˆ ˜y y
the null hypothesis, the asymptotic distribution of XCLR

is a mixture of central x2 distributions: 2X ∼ Px �CLR V 0

. Here and is the
′2 2 2(P � P )x (0) � P x (0) x { 0 PU U 1 T 2 0 V1 2 2

probability that , etc. By integrating the standardŷ � V
bivariate Gaussian density function over the regions in
question, one obtains and , where

′1 vP � P � P �U U T4 2p1 2 2

v is the angle between the vectors yA and yO:

Ty y 2A O
v � arccos � arccos � .1959p .( ) ( )�FFy FF.FFy FF 6A O

When the null hypothesis is false, the distribution of
XCLR is a mixture of noncentral x2 distributions:

2 2 2 2X ∼ Px � P x [d cos (v � f)]CLR V 0 U 11

2 2 2 2 2�P x (d cos f) � P x (d ) .′U 1 T 22 2

Here the P’s are the probabilities that lies in the variousŷ
regions when has a bivariate Gaussian density centeredŷ
at the true point . By integrating they � (d cosf,d sinf)
bivariate Gaussian density centered at y and converting
to polar coordinates, we obtain

p
p

2dsinf dcosf1�
2P � (2p) f dr � f dr ;U � �1 ( ) ( )[ ]sin r cos rf f

p�f

dsin (v � f)1�
2P � (2p) f drU �2 [ ]{ sin (r � v)v

f�p

dcos (v � f)
� f dr ;� [ ]p }cos (r � v)v�

2

p�f

d sin (v � f)1�
2P � 1 � (2p) f dr′T � [ ]2 { sin (r � v)v

f p

d sin (v � f) d sinf
� f dr � f dr .� �[ ] ( ) }sin (v � r) sinr0 f

Here is the standard univariate
1 1 2� � x
2 2f(x) � (2p) e

Gaussian density. These formulas differ from those ob-
tained by Holmans (1993). The latter appear to be in
error, since they fail to satisfy the requirement

lim P � lim P � 0U U1 2
dr� dr�

and

lim P � 1 .′T2
dr�

Appendix C

Constraints on IBD Probabilities for Affected Sib Triples

Let E be the event that all three sibs are affected, and
let IBDibe the event that the sibs have IBD configuration
i, i � 0,1,2,3, as shown in table 3. Table 3 also shows
the Mendelian probabilities . From Bayes’sP(IBD ) � pi i

rule, the IBD configuration probabilities of three affected
sibs are
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p P(EFIBD )i iz � P(IBDFE) � � p (1 � h ) , (C1)i i i iP(E)

where

3P(EFIBD ) � P(E)i
h � ; P(E) � p P(EFIBD ) . (C2)�i i iP(E) i�0

We wish to show that any point (z0,z1,z2) lies in the
polyhedron T3 shown in figure 3. This polyhedron is
defined by the constraints

1. z x 0 ;2

2. z � z � z X 1 ;0 1 2

3
3. z � z X0 2 4

4. z x z ;0 2

5. 2z � 5z X 2 ; .1 2

3 7
6. z � z x1 210 40

4 5
7. z � z � z x .0 1 23 6

Constraints 1 and 2 are obviously satisfied, since the zi

are probabilities. To verify the remaining five con-
straints, we use equation (C1) and the Mendelian prob-
abilities pi of table 3 to rewrite them as

3. h � h X 0; 4. h x h ; 5. h � 5h X 0 ; (C3)0 2 0 2 1 2

6. 5h � 9h x 0; 7. 9h � 2h � 9h x 0 . (C4)1 2 0 1 2

Verification of these constraints requires that we specify
the probabilities P(EFIBDi) in equation (C2). To do so,
we assume the existence of two alleles, A1 and A2, at the
trait locus. Let qi denote the frequency of allele i, i �

, with and, for concreteness,1,2 q � q � 11 2

1
0 X q X X q X 1 . (C5)2 12

We assume that the three genotypes A1A1, A1A2, and
A2A2 occur in the population in the Hardy-Weinberg
proportions: ; ; and2P(A A ) � q P(A A ) � 2q q1 1 1 1 2 1 2

. Then, referring to the IBD configurations2P(A A ) � q2 2 2

in table 3 and letting Jij denote the penetrance for ge-
notype AiAj, we have

2 2 2

2P(EFIBD ) � q q q J J ;���0 i j k ij ik
i�1 j�1 k�1

2 2

3P(EFIBD ) � q q J ;��1 i j ij
i�1 j�1

2 2 2 2

P(EFIBD ) � q q q q J J J ;����2 i j k l ij ik lk
i�1 j�1 k�1 l�1

2 2 2 2

2P(EFIBD ) � q q q q J J . (C6)����3 i j k l ij kl
i�1 j�1 k�1 l�1

We now write the penetrances Jij as

J � f ;11 0

J � J � f � f � d ;12 21 0

J � f � 2f . (C7)22 0

We assume that the heterozygote penetrance J12 is be-
tween the two homozygote penetrances J11 and J22:

. These inequalities, when used withJ X J X J11 12 22

equation (C7), imply that

0 X f and � 1 X �f X d X f X 1 . (C8)

The parameterization equation (C7) gives an additive
model when , a dominant model when , andd � 0 d � f
a recessive model when . Substituting expressionsd � �f
(C7) for the penetrances in equations (C6) and then for
those in equations (C2), we obtain, after straightforward
but tedious calculations,

h � (a � b � g)q q /P(E) ;0 1 2

h � 3(a � 3b � 3g � 2d)q q /P(E) ;1 1 2

h � �(a � 3b � g � d)q q /P(E) ;2 1 2

h � (�a � b � 3g)q q /P(E) . (C9)3 1 2

Here

1 32 3 2 2a � r f � � q f � � 4q f d0 2 2( ) ( )2 2

1 12 2 2 3� � q (3 � 4q )fd � (1 � 2q ) d ; (C10)2 2 2( )2 2

12b � q q d (f � 2q f � d) ; (C11)1 2 0 2 2
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g � �q q dfr ; (C12)1 2

2d � 2q q (1 � 2q )fd ; (C13)1 2 2

and . Substituting the right sides ofr � f � (1 � 2q )d2

equations (C9) for the h’s in constraint (C3) and con-
straint (C4) allows us to rewrite them as

3. 2b � d x 0 ;

4. 2a � 4b � 2g � d x 0 ;

5. 4a � 12b � 2g � 3d x 0 ;

6. 2a � 6b � 12g � 7d x 0 ;

7. 2a � 6g � d x 0 .

To verify them, we will need the following lemma, whose
proof follows from inequality (C5) and inequality (C8).
LEMMA. For , each of the summands in a of equa-d x 0
tion (C10)) and in b of equation (C11) is nonnegative.
For ,d ! 0

1 2a x r (f � d) x 0 (C14)
2

and

1 12 2 3 3b x 2q q fd � q q d x q q d . (C15)1 2 1 2 1 22 2

CONSTRAINT 3. To verify this constraint, we note that
, which is nonnegative by122b � d � 2q q d (f � f � d)1 2 0 2

inequality (C8).
CONSTRAINT 4. When , the lemma implies thatd x 0

1 32a � 4b � 2g � d x 2 f � 4 7 0 � 2g � d( )2
2� f (f � 2q q d) .1 2

But, by inequality (C5), the right side is at least as large
as , which is nonnegative because , by ine-1f � d d X f2

quality (C8).
For , inequality (C14) and ninequality (C15) im-d ! 0

ply that

1 32a � 4b � 2g � d x 2 7 0 � 4 q q d � 2g � d1 2( )2
2 2� 2q q (f � d )(�d) .1 2

The last expression is nonnegative by inequalities (C8).
This proves constraint 4.
CONSTRAINT 5. For , the lemma implies thatd x 0

4a � 12b � 2g � 3d

1 3x 4 f � 12 7 0 � 2g � 3d( )2
3 2 2� 2f � 2q q f d � 4q q (1 � 2q )fd1 2 1 2 2

2x 2f (f � q q d) x 0 .1 2

The second inequality follows because, from inequality
(C5), , and the third inequality follows because,1q X2 2

from inequalities (C8), .d X f
For , inequality (C14) and inequality (C15) implyd ! 0

that

4a � 12b � 2g � 3d

12 2 3x 4 7 0 � 12 2q q fd � q q d � 2g � 3d1 2 1 2( )2
2 2 2� q q d (16q f � 4f ) � 2q q (�d)(f � 3d ) .1 2 2 1 2

From inequalities (C8), . Using this relation in2f x �df
the second summand above gives

4a � 12b � 2g � 3d

2 2 2x 16q q d f � 6q q d (f � d) ,1 2 1 2

which is nonnegative by inequalities (C8). This proves
constraint 5.
CONSTRAINT 6. For , the lemma implies thatd x 0

2a � 6b � 12g � 7d

1 13 2 2x 2 (1 � 2q )f � (3 � 8q )f d2 2[ ]2 2

�6 7 0 � 12g � 7d

2 2� f [(1 � 2q )f � (3 � 8q )d � 12d]2 2

2�2q q (1 � 2q )fd1 2 2

2 2x f [(1 � 2q )f � (3 � 8q )d � 12d]2 2

2 2x f [(1 � 2q )d � (3 � 8q )d � 12d]2 2

2� 2f d(1 � 2q )(2 � q ) x 0 .2 2

The second and fourth inequalities follow because, by
inequality (C5), , and the third inequality follows1q X2 2

because, by inequalities (C8), .d X f
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For , inequality (C14) and inequality (C15) implyd ! 0
that

2a � 6b � 12g � 7d.

1 3x 2 7 0 � 6 q q d � 12g � 7d1 2( )2
2 2 2� 3q q (�d)(�d � 4f ) � 2q q (1 � 2q )fd .1 2 1 2 2

Each of the summands on the right side is nonnegative
because, from inequalities (C8), and because ,2 2d X f
from inequality (C5), .1q X2 2

CONSTRAINT 7. For , the lemma implies thatd x 0

2a � 6g � d

3 2x (1 � 2q )f � (1 � 2q )(3 � 4q )2 2 2

2 2 2#fd � 6q q df � 4q q (1 � 2q )fd1 2 1 2 2

3x (1 � 2q � 6q q )f � (1 � 2q )2 1 2 2

2 2#(3 � 4q � 4q q )fd2 1 2

1 12 3� 6(q � ) � f � (1 � 2q )2 2[ ]3 3
2#(3 � 4q )fd x 0 .2

The second inequality holds because , from ine-d X f
qualities (C8), and the last one holds by inequality (C5).

For , inequality (C14) implies thatd ! 0

2a � 6g � d x 6g � d

2 2� �2q q [3df � 2(1 � 2q )fd ]1 2 2

2x 2q q (1 � 4q )fd x 0 .1 2 2

The second inequality holds because , by ine-f x �d
qualities (C8). This completes the proof.

Notice that, from equations (C11), (C12), and (C13)
an additive model ( ) gives , and so,d � 0 b � g � d � 0
from equation (C1) and equations (C9), (z ,z ,z ) �0 1 2

; that is, an additive model3 1 3[ (1 � a), (1 � 3a), (1 � a)]8 16 8

implies that the true point lies on the line segment NA
in figure 3.

For a recessive model ( ), without phenocopiesd � �f
( ), equations (C1), (C10), (C11), (C12), and (C13)f � 00

give

6q2z � ;0 21 � 6q � 9q2 2

1
z � ;1 21 � 6q � 9q2 2

26q2z � ;2 21 � 6q � 9q2 2

23q2z � .3 21 � 6q � 9q2 2

For , these equations imply thatq K 1 (z ,z ,z ) ∼2 0 1 2

, where ; that is, under a re-(n,1 � n,0) n � 6q /(1 � 6q )2 2

cessive model for a rare trait without phenocopies,
(z0,z1,z2) lies near the line BA in figure 3.
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